Copied to
clipboard

G = C42⋊(C7⋊C3)  order 336 = 24·3·7

The semidirect product of C42 and C7⋊C3 acting via C7⋊C3/C7=C3

metabelian, soluble, monomial, A-group

Aliases: C42⋊(C7⋊C3), C7⋊(C42⋊C3), (C4×C28)⋊2C3, C22.(C7⋊A4), (C2×C14).2A4, SmallGroup(336,57)

Series: Derived Chief Lower central Upper central

C1C4×C28 — C42⋊(C7⋊C3)
C1C22C2×C14C4×C28 — C42⋊(C7⋊C3)
C4×C28 — C42⋊(C7⋊C3)
C1

Generators and relations for C42⋊(C7⋊C3)
 G = < a,b,c,d | a4=b4=c7=d3=1, ab=ba, ac=ca, dad-1=ab-1, bc=cb, dbd-1=a-1b2, dcd-1=c4 >

3C2
112C3
3C4
3C4
3C14
16C7⋊C3
3C2×C4
28A4
3C28
3C28
3C2×C28
4C7⋊A4
7C42⋊C3

Smallest permutation representation of C42⋊(C7⋊C3)
On 84 points
Generators in S84
(8 68 82 71)(9 69 83 72)(10 70 84 73)(11 64 78 74)(12 65 79 75)(13 66 80 76)(14 67 81 77)(36 61 49 50)(37 62 43 51)(38 63 44 52)(39 57 45 53)(40 58 46 54)(41 59 47 55)(42 60 48 56)
(1 33 17 25)(2 34 18 26)(3 35 19 27)(4 29 20 28)(5 30 21 22)(6 31 15 23)(7 32 16 24)(8 82)(9 83)(10 84)(11 78)(12 79)(13 80)(14 81)(36 61 49 50)(37 62 43 51)(38 63 44 52)(39 57 45 53)(40 58 46 54)(41 59 47 55)(42 60 48 56)(64 74)(65 75)(66 76)(67 77)(68 71)(69 72)(70 73)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)(64 65 66 67 68 69 70)(71 72 73 74 75 76 77)(78 79 80 81 82 83 84)
(1 64 37)(2 66 41)(3 68 38)(4 70 42)(5 65 39)(6 67 36)(7 69 40)(8 63 35)(9 58 32)(10 60 29)(11 62 33)(12 57 30)(13 59 34)(14 61 31)(15 77 49)(16 72 46)(17 74 43)(18 76 47)(19 71 44)(20 73 48)(21 75 45)(22 79 53)(23 81 50)(24 83 54)(25 78 51)(26 80 55)(27 82 52)(28 84 56)

G:=sub<Sym(84)| (8,68,82,71)(9,69,83,72)(10,70,84,73)(11,64,78,74)(12,65,79,75)(13,66,80,76)(14,67,81,77)(36,61,49,50)(37,62,43,51)(38,63,44,52)(39,57,45,53)(40,58,46,54)(41,59,47,55)(42,60,48,56), (1,33,17,25)(2,34,18,26)(3,35,19,27)(4,29,20,28)(5,30,21,22)(6,31,15,23)(7,32,16,24)(8,82)(9,83)(10,84)(11,78)(12,79)(13,80)(14,81)(36,61,49,50)(37,62,43,51)(38,63,44,52)(39,57,45,53)(40,58,46,54)(41,59,47,55)(42,60,48,56)(64,74)(65,75)(66,76)(67,77)(68,71)(69,72)(70,73), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84), (1,64,37)(2,66,41)(3,68,38)(4,70,42)(5,65,39)(6,67,36)(7,69,40)(8,63,35)(9,58,32)(10,60,29)(11,62,33)(12,57,30)(13,59,34)(14,61,31)(15,77,49)(16,72,46)(17,74,43)(18,76,47)(19,71,44)(20,73,48)(21,75,45)(22,79,53)(23,81,50)(24,83,54)(25,78,51)(26,80,55)(27,82,52)(28,84,56)>;

G:=Group( (8,68,82,71)(9,69,83,72)(10,70,84,73)(11,64,78,74)(12,65,79,75)(13,66,80,76)(14,67,81,77)(36,61,49,50)(37,62,43,51)(38,63,44,52)(39,57,45,53)(40,58,46,54)(41,59,47,55)(42,60,48,56), (1,33,17,25)(2,34,18,26)(3,35,19,27)(4,29,20,28)(5,30,21,22)(6,31,15,23)(7,32,16,24)(8,82)(9,83)(10,84)(11,78)(12,79)(13,80)(14,81)(36,61,49,50)(37,62,43,51)(38,63,44,52)(39,57,45,53)(40,58,46,54)(41,59,47,55)(42,60,48,56)(64,74)(65,75)(66,76)(67,77)(68,71)(69,72)(70,73), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84), (1,64,37)(2,66,41)(3,68,38)(4,70,42)(5,65,39)(6,67,36)(7,69,40)(8,63,35)(9,58,32)(10,60,29)(11,62,33)(12,57,30)(13,59,34)(14,61,31)(15,77,49)(16,72,46)(17,74,43)(18,76,47)(19,71,44)(20,73,48)(21,75,45)(22,79,53)(23,81,50)(24,83,54)(25,78,51)(26,80,55)(27,82,52)(28,84,56) );

G=PermutationGroup([[(8,68,82,71),(9,69,83,72),(10,70,84,73),(11,64,78,74),(12,65,79,75),(13,66,80,76),(14,67,81,77),(36,61,49,50),(37,62,43,51),(38,63,44,52),(39,57,45,53),(40,58,46,54),(41,59,47,55),(42,60,48,56)], [(1,33,17,25),(2,34,18,26),(3,35,19,27),(4,29,20,28),(5,30,21,22),(6,31,15,23),(7,32,16,24),(8,82),(9,83),(10,84),(11,78),(12,79),(13,80),(14,81),(36,61,49,50),(37,62,43,51),(38,63,44,52),(39,57,45,53),(40,58,46,54),(41,59,47,55),(42,60,48,56),(64,74),(65,75),(66,76),(67,77),(68,71),(69,72),(70,73)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63),(64,65,66,67,68,69,70),(71,72,73,74,75,76,77),(78,79,80,81,82,83,84)], [(1,64,37),(2,66,41),(3,68,38),(4,70,42),(5,65,39),(6,67,36),(7,69,40),(8,63,35),(9,58,32),(10,60,29),(11,62,33),(12,57,30),(13,59,34),(14,61,31),(15,77,49),(16,72,46),(17,74,43),(18,76,47),(19,71,44),(20,73,48),(21,75,45),(22,79,53),(23,81,50),(24,83,54),(25,78,51),(26,80,55),(27,82,52),(28,84,56)]])

40 conjugacy classes

class 1  2 3A3B4A4B4C4D7A7B14A···14F28A···28X
order123344447714···1428···28
size131121123333333···33···3

40 irreducible representations

dim1133333
type++
imageC1C3A4C7⋊C3C42⋊C3C7⋊A4C42⋊(C7⋊C3)
kernelC42⋊(C7⋊C3)C4×C28C2×C14C42C7C22C1
# reps12124624

Matrix representation of C42⋊(C7⋊C3) in GL3(𝔽337) generated by

100
01480
00189
,
14800
01480
00336
,
7900
01750
00295
,
010
001
100
G:=sub<GL(3,GF(337))| [1,0,0,0,148,0,0,0,189],[148,0,0,0,148,0,0,0,336],[79,0,0,0,175,0,0,0,295],[0,0,1,1,0,0,0,1,0] >;

C42⋊(C7⋊C3) in GAP, Magma, Sage, TeX

C_4^2\rtimes (C_7\rtimes C_3)
% in TeX

G:=Group("C4^2:(C7:C3)");
// GroupNames label

G:=SmallGroup(336,57);
// by ID

G=gap.SmallGroup(336,57);
# by ID

G:=PCGroup([6,-3,-2,2,-7,-2,2,73,1015,3188,266,579,5044,9077]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^7=d^3=1,a*b=b*a,a*c=c*a,d*a*d^-1=a*b^-1,b*c=c*b,d*b*d^-1=a^-1*b^2,d*c*d^-1=c^4>;
// generators/relations

Export

Subgroup lattice of C42⋊(C7⋊C3) in TeX

׿
×
𝔽